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Abstract 

      The COVID-19 pandemic, caused by SARS-CoV-2, has had a profound global impact, resulting in widespread infections 

and fatalities. Despite extensive research, no antiviral drugs have been clinically approved to specifically target the virus, 

highlighting the urgent need for innovative therapeutic approaches. Triazine-based compounds have gained attention as 

potential antiviral agents due to their broad-spectrum activity and ability to inhibit crucial viral enzymes, including the main 

protease (3CLpro) and RNA-dependent RNA polymerase (RdRp). Their synthetic versatility allows for structural 

modifications that enhance potency, selectivity, and pharmacokinetics, making them valuable candidates for drug 

development. Drug candidates for treating COVID-19 were reported. Crucial routes and novel synthetic strategies for many 

up-to-date triazine analogues were demonstrated for further drug development to overcome this outbreak.  

This review explores the antiviral potential of triazine-based compounds and synthetic strategies for optimization. By 

highlighting their role in antiviral drug discovery, this work provides insights into their therapeutic potential for combating 

current and future coronavirus outbreaks. 
 
 

1. Introduction 

      The COVID-19 pandemic, triggered by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), has had 

a devastating global impact, posing a serious public health 

threat [1]. Initially detected in Wuhan, China, in December 

2019, the outbreak quickly escalated, prompting the World 

Health Organization (WHO) to classify it as the sixth Public 

Health Emergency of International Concern (PHEIC) [2-5]. 

Since then, the virus has spread across the globe, causing 

millions of infections and fatalities. 
 

Coronaviruses (CoVs), members of the Coronaviridae family 

within the order Nidovirales, are distinguished by their 
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crown-like spikes (Latin: corona) visible under electron 

microscopy [7-9]. Similar to other coronaviruses, SARS-

CoV-2 is an enveloped, positive-sense single-stranded RNA 

(+ssRNA) virus with a genome size of 27–32 kb, making it 

the largest known RNA virus [10-12]. Its genome encodes 16 

non-structural proteins (nsp1–nsp16) within the open reading 

frame (ORF) 1a/b at the 5′ end, followed by structural 

proteins—including nucleocapsid (N), spike (S), envelope 

(E), and membrane (M)—that are essential for viral entry, 

replication, and pathogenesis [4,6]. 

      The spike (S) protein enables viral entry by recognizing 

and binding to the host cell receptor, angiotensin-converting 

enzyme 2 (ACE2), while the membrane (M) protein plays a 

crucial role in viral assembly and budding. Additionally, the 

envelope (E) protein contributes to morphogenesis and 

pathogenesis, further enhancing viral infectivity. Despite 

significant research efforts, no clinically approved antiviral 

drugs specifically target SARS-CoV-2, underscoring the 

critical need for innovative therapeutic strategies [7]. 

      Among the diverse antiviral drug candidates, triazine-

based compounds have garnered significant interest due to 

their broad-spectrum activity and favorable pharmacological 

profile. These heterocyclic compounds are recognized for 

their potent inhibitory effects on essential viral enzymes, 

including the main protease (3CLpro) and RNA-dependent 

RNA polymerase (RdRp), positioning them as promising 

candidates for antiviral drug development. Their synthetic 

versatility allows structural modifications to enhance 

potency, selectivity, and pharmacokinetics, further 

expanding their therapeutic potential. 

      Beyond their antiviral properties, triazines have been 

widely studied for their diverse biological activities. 

Numerous naturally occurring and synthetic triazine 

derivatives exhibit potent inhibitory effects against various 

biological targets [13], including tubulin [14], 

metalloproteinases [15], histone deacetylases [16], urease, 

and tyrosinase [17]. Moreover, some triazine-based 

compounds act as inhibitors of key protein kinases involved 

in critical signaling pathways associated with cancer cell 

proliferation, such as glycogen synthase kinase 3 [18], 

cyclin-dependent kinases [19], ABL kinase [20], and casein 

kinase 2 [21]. Their broad pharmacological relevance 

highlights their versatility in drug discovery and therapeutic 

applications [22-25]. To combat human disease-causing 

pathogens, extensive research has focused on the synthesis of 

diverse triazine derivatives, Structural variations, such as 

thiazole-triazines, quinoline-triazine hybrids, and s-triazine 

nucleobases, have been explored for their potential in treating 

several diseases [26- 39]. 

 

 

       This review examines the antiviral potential of triazine-

based compounds against coronaviruses, highlighting key 

drug candidates, and the synthetic strategies of triazine based 

compounds aimed at optimizing their therapeutic efficacy. 

Since triazine derivatives are being explored for their 

potential in antiviral drug discovery, a review of established 

and investigational antiviral agents helps to highlight key 

structural and mechanistic features that can inform the 

rational design of triazine-based antivirals and bridge the gap 

between existing and novel therapeutics. By providing 

insights into their role in antiviral drug discovery, this work 

aims to contribute to the development of effective treatments 

against current and future coronavirus outbreaks. 
 

2. Drug candidates 

 

2.1. Remdesivir 

      Remdesivir (GS- 5734) (Fig.1), is an adenosine 

triphosphate analog as an effective treatment for Ebola. Its 

potency against coronaviruses was also investigations in 

2017. Remdesivir is moreover being studied as a compound 

that can be utilized for treating SARS-CoV-2. 

 
 

Fig. 1. Remdesivir  

 

      Remdesivir, a mono-phosphoramidate prodrug of the C-

adenosine nucleoside analog GS-441524, inhibits the 

replication of the model β-coronavirus murine hepatitis virus 

and suppresses RNA synthesis in the wild-type virus. In 

contrast, an nsp14 ExoN (-) mutant, which lacks 

proofreading ability, exhibits increased susceptibility to 

remdesivir. Additionally, remdesivir effectively inhibits 

MERS-CoV infection in human amniotic epithelial cells, 

with an EC50 of 0.074±0.023 µM and a CC50 of 10 µM [40]. 

 

       Remdesivir is an experimental anti-viral drug, designed 

for treating Ebola virus disease can potentially fight Nipah 

virus. Four African green monkeys completely were 

protected by using remdesivir from a lethal dose of Nipah 

virus. It is being developed by Gileald Sciences, INC. in 

cooperation with the centers for disease control and 

prevention [41].  
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Fig. 2. BCX4430 (Immucillin-A)  

 

      In multiple in vitro systems, comprising primary human 

airway epithelial cell cultures with submicromolar EC50 

values.  

      Remdesivir (GS-5734), a drug with anti-Ebola 

characteristics, has been indicated to inhibit MERS-CoV and 

SARS-CoV replication. Remdesivir's prophylactic and early 

therapeutic dosing lowered lung viral load and enhanced 

respiratory function with other clinical symptoms, according 

to experimental evaluation in a mouse model of SARS-CoV 

infection. Remdesivir's exact mode of action is yet unknown, 

but it is hypothesized that the molecule targets the viral 

polymerase's RdRP function. 

 

2.2. Galidesivir 

      Galidesivir (BCX4430) (Fig.3) is nucleoside analogue 

that similar to other representatives of this group inhibit viral 

RNA polymerase function and result in chain termination. 

When it was adminstred intramuscularly after virus exposure 

in animal experiments, those drugs protected against EBOV 

infection. It is significant that remdesivir and galidesivir did 

not incorporate into human DNA or RNA underling the 

drug‘s potential for approval as the drug safety perspective 

showed, if clinical trials affirm animal experiments. 

Monentarily, utility of remdesivir and galidesivir might be a 

choice for compassionate utility for potentially exposed 

individuals [26, 28]. Remdesivir has recently also been 

observed to reveal reasonable antiviral potency against Lassa 

virus and Junin virus, both mammarena viruses resulting in 

high consequence disease and possessing the potential for 

misuse [42]. 

      Galidesivir is classified as an adenosine analog and has 

been shown to inhibit Zaire Ebolavirus [43]. In vitro, it has 

demonstrated broad-spectrum antiviral activity against 

various negative- and positive-sense RNA viruses [44]. 

Additionally, this drug has exhibited antiviral efficacy 

against other coronaviruses [45]. Phase I clinical trials have 

been initiated to evaluate its safety in humans [46]. Given its 

potency against emerging coronaviruses, it may be explored 

as a potential therapeutic option for COVID-19. 

 

2.3. Favipiravir 

      A new antiviral drug, favipiravir, T-705 (Fig.4), is a 

pyrazine carboxamide analog, its discovery was arisen in 

Japan as a candidate antiviral drug by Toyama chemical Co.   

It is potent against different viruses such as influenza viruses, 

west Nile virus, yellow fever virus, foot- and mouth disease 

virus, arenaviruses, flaviviruses, alphaviruses, bunyaviruses, 

norovirus and picornavirus. Favipiravir was affirmed in japan 

in 2014 for treating influenza virus disease [47]. 

 

 
 
Fig. 3. Galidesivir  

 
 

 
 

Fig. 4. Favipiravir 

 

      The effect of T-705 on NSP4 was also studied. The 

features of these virus variants in cell culture proposed that 

the target of T-705 is the highly preserved portion of the viral 

polymerase of positive-strand RNA viruses.  Favipiravir & 

the ribofuranosyl triphosphate (Fig. 5) have indicated binding 

affinity for NSP4 protease domain. Metabolic 

experimentation affirmed a direct impact of favipiravir on 

CHIKV RNA synthesis [48]. 

 
 
 

Fig. 5. T-705 ribofuranosyl triphosphate 

 

      Inhibition  of the viral RNA-dependent RNA polymerase 

without inbition of cellular RNA and DNA synthesis is 

involved. Investigations with T-705 revealed inhibition of 

2009 H1N1 influenza virus and H5 virus in vitro and animal 

model [49]. T-705 is undergoing clinical investigation for 

treating influenza A & B virus [50]. It is used experimentally 

in both China & Japan for treating SARS-CoV-2 [51]. The 

antiviral revealed effectiveness in treating SARS-CoV-2 

through clinical trials [51, 52]. The approval of the drug 

Marketing affirmed in 2020 [51, 52]. 

 

2.4. Ribavirin & BILN 2061 

     Ribavirin (Fig.6), a nucleoside inhibitor, interacted with 

the catalytic site with remarkable binding energy [48]. Non-

nucleoside inhibitors, as diketo acid analogs & BILN 2061 
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(7) (Fig.7), indicated well interactions with the thumb & palm 

allosteric sites. There is selective anti-viral potency of 

favipiravir on the replication of alphaviruses, CHIKV, and 

favipiravir-resistant CHIKV variants, which all bear a 

K291R mutation in the RdRp NSP4.  

  
 

Fig. 6. Ribavirin 

 

 
 

Fig. 7. BILN 2061  

 

2.5. Umifenovir 

      The antiviral drug umifenovir (Fig.8) is considered as an 

indole-based analogue (arbidol), hydrophobic, and dual 

acting direct antiviral and host-targeting agent [49]. It was 

initially developed at the research institute of pharmaceutical 

chemistry in Russia. This drug has been utilized for the 

intervention of prophylaxis and acute respiratory infections 

such as influenza since 1990. Umifenovir shows inhibitory 

potency against CHIKV. The remarkable anti-viral potency 

of this drug might be ascribed to the varied mechanisms of 

action, counting interference with the first stages of CHIKV 

attachment or entry or the replication cycle, as well as 

changes of cellular membranes. A synthetic approach 

resulting in umifenovir comprises main steps which are the 

Fridel-Crafts alkylation, reductive cyclization, and the 

mannich condensation. Also, it can be furinshed via 

Nenitzescu indole synthesis, S-alkylation, 

acylation/bromination, and the mannich condensation [47]. 

 Umifenovir's capacity to exert antiviral effects via multiple 

of pathways prompted research into the drug's applicability 

for different enveloped and non-enveloped DNA and RNA 

viruses. Due to the slow emergence of umifenovir resistance, 

its dual potency may also provide extra defence against viral 

resistance. Currently, umifenovir is being demonstrated as an 

effective therapeutic and prophylactic agent for the pandemic 

COVID-19 resulted from 2019-nCoV infections combining 

with investigational antiviral therapies [49]. 

 
 

Fig. 8. Umifenovir  

 

2.6. Lopinavir/ritonavir 

      Lopinavir/ritonavir (Fig.9, 10), Kaletra as a brand name, 

is an HIV-1 protease inhibitor. In 2000, that was first 

approved for the treatment of HIV-1 infection in the United 

States, often in combination with other anti-retrovirals [53, 

54]. Low-level proof has proposed that the combination 

showed utility in treating earlier coronavirus outbreaks, as 

MERS-CoV & SARS-CoV, and it may be utilized in treating 

early SARS-CoV-2 infections [55]. 

 
 

Fig. 9. Lopinavir DB01601  

 

 
 

Fig. 10. Ritonavir DB00503  

 

2.7. Triazavirin 

      Triazavirin (Fig.11) is an anti-viral agent developed in 

Russia that has demonstrated efficiency against influenza A 

& B, comprising the H5N1 strain [56, 57]. Triazavirin has 

indicated ability in eliminating influenza disease and its 

complications [58]. Because of the resemblances between 

H5N1 and 2019-nCoV, Triazavirin is demonstrated as a 

choice to combat SARS-CoV-2 [57]. 
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Fig. 11. Triazavirin 

 

2.8. Darunavir 

      Darunavir (Fig.12) is a protease inhibitor utilized with 

other HIV protease inhibitor drugs for managing the infection 

of HIV-1. As a 2nd generation protease inhibitor, darunavir is 

designed and synthesized to challenge resistance to the 

standard HIV therapy. In 2006, the FDA approved it. Primary 

consequences from in vitro studies show that darunavir 

combined with umifenovir, an anti-viral utilized in treating 

the flu in China and Russia is potential in suppressing 2019-

nCoV [49]. One more in vitro investigation also supports the 

utility of darunavir in COVID 19 treatment [59]. Clinical 

trials in humans are ongoing that combine cobicistat and 

darunavir, and identify the efficiency of this combination 

towards SARS-CoV-2 [60]. Currently, it is indistinct if the in 

vitro effects of darunavir combined with boosting agents will 

interpret to clinical effects in humans [61], but clinical trials 

may offer advance vision [62]. 

 

 
 

Fig. 12. Darunavir  

 

2.9. TMC-310911 

      TMC-310911 (ASC-09) (Fig.13) is a new investigational 

protease inhibitor that is structurally close to the drug 

darunavir [63]. It has been demonstrated for utility in HIV-1 

infections. It might provide benefits over currently available 

HIV therapies, for instance a broader in vitro resistance 

profile comparable to other currently used protease 

inhibitors. 

 

 
 

Fig. 13. TMC-310911 

 

2.10. Chloroquine 

      Currently, chloroquine (Fig.14) is enduring clinical trials 

in China as an effective therapy for COVID-19 . CQ has been 

investigated to prevent viral entry into cells through 

increasing the pH of endosomes and inhibition of the 

glycosylation of ACE2. In vitro investigations have indicated 

the inhibition of infections at concs. seen in patients treated 

with CQ [64]. 

 
 

 

Fig. 14. Chloroquine  

 

 

      Using these medications for treating COVID-19 is still 

experimental, and they should not be used during these 

trials without medical supervision. 

 

3. Chloroquine against coronavirus 
 

      In vitro, chloroquine is a bioactive agent possesses 

antiviral potency against RNA viruses as HIV [65-68], 

hepatitis C virus [69],  hepatitis A virus [70, 71], hepatitis B 

virus [72], influenza A H5N1 virus [73], influenza A & B 

viruses [74-77] , Dengue virus [78, 79], Chikungunya virus 

[80-82], Zika virus [83], poliovirus [84], rabies virus [85], 

Lassa virus [86], Crimean–Congo hemorrhagic fever virus 

[87],  Hendra and Nipah viruses [88, 89], herpes simplex 

virus [90] and Ebola virus [91]. 

      Chloroquine (CQ) has been demonstrated to inhibit the in 

vitro coronaviruses’ replication. Up-to-date researches lend 

credence to the idea that CQ can enhance the clinical 

outcome for SARS-CoV-2-infected patients. It is yet 

unknown how chloroquine achieves these outcomes at the 

molecular level [92-97]. Remarkably, it could be concluded 

that 2019-nCoV molecular crosstalk with its target cell can 

be changed via CQ through inhibiting kinases like MAPK.  
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CQ could also interfere with the M protein's proteolytic 

processing and cause alteration of virion assembly & 

budding.   

      Indirectly, this drug could act through eliminating the 

formation of pro-inflammatory cytokines and/or via the 

activation anti-SARS-CoV-2 CD8 + T-cells in COVID-19 

disease. In 2007, the possibility of utilizing CQ to oppose 

orphan viral infections was demonstrated [98]. The clinical 

trials [99] will confirm if the hopes of utilizing CQ in treating 

COVID-19 can be vertified [100]. Chloroquine has side 

effects it affects vision and cause retinal toxicity [101], so we 

should search for the other analogs of chloroquine which may 

have not those serious side effects.  

      Herein there are the novel synthetic strategies of the 

triazine-based antivirals which should be a focusing spot on 

the methods of synthesizing various analogues that should be 

taken in concern to facilitate developing novel effective 

drugs is to begin from the chemical strategies outlined in this 

review. 

 

4. Synthetic Strategies for Triazine-Based 

Antivirals 
 

4.1. Traditional S-Triazine Synthesis and Functionalization 
 

      Compound 3 was synthesized from compound 1 and 2-

chloro-4,6-dimethoxy-1,3,5-triazine 2 in the presence of 

triethylamine, using acetonitrile as the solvent (Scheme 1). 

The novel pyrithiobac (PTB) derivatives were systematically 

assessed across various biological platforms to determine 

their potential as antiviral agents. Notably, compound 3 

demonstrated promising inhibitory activity against SARS-

CoV Mpro, with an IC50 of 4.471 mM, while exhibiting low 

cytotoxicity in mammalian 293T cells. However, while its 

inhibitory potency is encouraging, the relatively high IC50 

value suggests a need for further structural optimization to 

enhance efficacy. Molecular modeling results indicated that 

HOMO-1 plays a role in AHAS inhibition, and a potential 

binding mode of 3 with SARS-CoV Mpro was predicted 

[102], providing valuable insight into structure-activity 

relationships (SAR) for future modifications. 

 

4.2 Morpholine-Assisted Functionalization of Triazines 
 

      A synthetic pathway was employed to obtain highly 

functionalized triazines. Compound 7 were synthesized from 

2,4,6-trichloro-1,3,5-triazine (cyanuric chloride, compound 

4) using the synthetic route outlined in Scheme 2. The s-

triazine privileged scaffold was utilized to synthesize a series 

of derivatives, among which compound 7 emerged as the lead 

candidate, exhibiting micromolar activity against SARS-

CoV-2. The low cytotoxicity observed in Caco-2 cells further 

supports its potential as a viable drug candidate. Preliminary 

mechanistic investigations revealed that 7 (R= 2-OH) inhibits 

the human DEAD-box RNA helicase DDX3X, a host factor 

critical for viral replication. Given that helicase inhibitors 

have been implicated in broad-spectrum antiviral activity, 

these findings suggest that compound 7 could be further 

explored for pan-coronaviral therapeutic potential [103]. 

 
Scheme 1. Reagents and Conditions:i) TEA,CH3CN. 

 

 

 
Scheme 2. Reagents and Conditions: i) CH3OCH3, -60 °C, 

O(CH2CH2)2NH, 5 h; ii) Hünig′s base, O(CH2CH2)2NH, EtOH, 25 

°C, 18 h; iii) DCM, 25 °C, O(CH2CH2)2NH, 18 h; iv) 1. DCM, 

NH2NH2, reflux 12 h, 2. C₆H₅CH₃, 2-hydroxybenzaldehyde, 3 h, 

reflux, Dean–Stark. 

 

4.3 Cyclization Strategies with Carbonyldiimidazole (CDI) 

      The synthesis of compound 15 began with the reduction 

of 2,4,5-trifluorobenzoic acid (8) using LiAlD₄. Bromination 

of the resulting product (9) afforded the key deuterated 

intermediate 10. Subsequent alkylation with 3-tert-butyl-6-

(ethylthio)-1,3,5-triazine-2,4(1H,3H)-dione, followed by 

removal of the tert-butyl group and installation of the triazole 

moiety, yielded intermediate 14. Final substitution of the 
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ethylthio group with the indazole unit furnished the C11-d₂ 

compound 15 (Scheme 3 & 4).  

      Compound 15 exhibited potent in vitro activity against 

SARS-CoV-2 3CLpro, with X-ray crystallographic analysis 

confirming key binding interactions. Its favorable 

pharmacokinetic profile, including bioavailability and 

plasma exposure, highlights its translational potential. 

Additionally, its broad-spectrum activity against other 

coronaviruses, particularly MHV-A59, reinforces its 

therapeutic relevance. However, its reduced efficacy against 

alphacoronaviruses underscores the need to fine-tune 

molecular features to achieve broader antiviral coverage 

[104]. 

  

 

Scheme 3. Reagents and Conditions: i) LiAlH4, (CH2)4O, 0 ◦C to 

rt; ii) Phosphorus tribromide, rt; iii) 3-tert-butyl-6-(ethylthio)-1,3,5-
triazine-2,4(1H,3H)-dione, K2CO3, CH3CN, 80 ◦C. 

      A new class of compounds is described as shown in 

schemes 5-8 that inhibit the coronavirus 3CL protease, along 

with their pharmaceutically acceptable salts and related 

pharmaceutical compositions. Additionally, the synthesis of 

these compounds and their efficacy based on in vitro and cell-

based assays were performed [105]. 

 

  
Scheme 4. Reagents and Conditions: i) TFA, rt; ii) K2CO3, DMF, 

60 ◦C; iii) 5-amino-6-chloro-2-methyl-2H-indazole, Li(HMDS), 

(CH2)4O, 0 ◦C to rt. 

     The synthetic process begins with the coupling of 

compound 16 and compound 17 to form an intermediate, 

which is then hydrolyzed using aqueous sodium hydroxide 

and subsequently acidified to yield compound 18 in 

quantitative yield. Methylation of the thiol group with methyl 

iodide in dimethylformmide at 50°C results in compound 19 

with an 80% yield. Compound 19 is then coupled with 

compound 20 utilizing triphosgene and triethylamine, 

producing compound 21 in quantitative yield. Cyclization of 

compound 21 with carbonyldiimidazole (CDI) in the 

presence of N,N-diisopropylethylamine (DIEA) yields 

compound 22 at 35%. Finally, nucleophilic substitution of 

the thiomethyl group in compound 22 with compound 23 

leads to the formation of compound 24 in 57% yield, as 

illustrated in Scheme 5 [105]. 

 
Scheme 5. Reagents and Conditions: i) 1. CH2Cl2, rt. 2. NaOH, 

CH3OH. 3. HCl. ii) CH3I, DMF, 50oC. iii) Triphosgene, THF, Et3N. 
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Scheme 6. Reagents and Conditions: i) DIEA, DMF. ii) LHMDS, 

THF. 

 

    The discovery of S-217622 (29), the first oral noncovalent, 

nonpeptidic SARS-CoV-2 3CLpro inhibitor, represents a 

significant advancement in COVID-19 therapeutics. Identified 

through a structure-based drug design approach, S-217622 

demonstrated potent in vitro antiviral activity against 

circulating SARS-CoV-2 variants and exhibited favorable 

pharmacokinetic properties in vivo, supporting once-daily oral 

dosing. Its dose-dependent suppression of intrapulmonary 

viral replication in mice underscores its therapeutic promise. 

Nevertheless, further clinical validation is required to confirm 

its long-term efficacy and resistance profile against emerging 

variants [105,106].  

      The synthesis of S-217622 (29) is outlined in Scheme 8. 

Beginning with the known compound 25, alkylation with 1-

(bromomethyl)-2,4,5-trifluorobenzene produced compound 

26 in 93% yield. Subsequent removal of the 3-t-Bu group, 

introduction of the triazole unit, and substitution of the SEt 

moiety with an indazole unit ultimately yielded S-217622 (29) 

[106]. 

 

 
Scheme 7. Reagents and Conditions: i) α-Bromo-2,4,5-

trifluorotoluene, K2CO3, ACN, 80 °C; ii) CF3CO2H, rt. 

 

 
Scheme 8. Reagents and Conditions:  i) 3-Chloromethyl-1-

methyl-1H-[1,2,4]triazole hydrochloride, K2CO3, HCON(CH3)2, 60 

°C; ii) 5-amino-6-chloro-2-methyl-2H-indazole, LiN(Si(CH3)3)2, 

(CH₂)₄O, 0 °C to rt. 

 

 

4.4. Synthesis of Triazine Sulfonamides via 

Cyanodithioiminocarbonate 
 

      Triazine sulfonamide derivatives emerged as another 

promising antiviral class. Notably, compound 32 exhibited 

superior antiviral activity against SARS-CoV-2 (IC50 = 2.378 

μM) compared to remdesivir (IC50 = 10.11 μM), suggesting 

strong potential for further development. However, a 
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comprehensive pharmacokinetic and toxicity assessment is 

necessary to determine its clinical viability. Structural 

modifications may be required to optimize its drug-like 

properties while maintaining potency [107]. 

       A novel approach for synthesizing triazine sulfonamide 

derivatives 32 involves the reaction of sulfaguanidine 

derivatives 30 with N-cyanodithioiminocarbonate 31 

(Scheme 9). Subsequent modifications with several 

secondary amines and anilines produced substituted triazine 

sulfonamide analogs, which exhibited promising broad-

spectrum biological activities, comprising antimicrobial, 

antitumor, and antiviral properties. The antiviral potential 

against SARS-CoV-2 was evaluated using the MTT 

cytotoxicity assay to determine the half-maximal cytotoxic 

concentration (CC50) and inhibitory concentration 50 (IC50) 

of a representative compound. Notably, compound 32 (R =H) 

demonstrated potent antiviral activity against SARS-CoV-2, 

with an IC50 of 2.378 μM, surpassing the efficacy of 

remdesivir (IC50 = 10.11 μM). These findings indicate that, 

with further optimization, triazine sulfonamides could be 

promising candidates for antiviral drug development [107]. 

 

 
Scheme 9. Reagents and Conditions: i) Diethylene dioxide, KOH, 

reflux, 2 h.  

 
 

       Novel substituted 1,3,5-triazine sulfonamide 

thioglycosides have been designed and synthesized through 

an efficient direct approach, starting from potassium 

cyanocarbonimidodithioate. This highly reactive 

intermediate was reacted with substituted sulfonyl 

guanidines to yield the corresponding 1,3,5-triazine 

sulfonamides. The final triazine sulfonamide thioglycosides 

were then obtained by coupling these sulfonamides with 

peracylated α-D-gluco- & galacto-pyranosyl bromides. The 

novel synthesized compounds were characterized via 

spectroscopic techniques and elemental analysis. 

 
Fig.15. The molecule of Structure 32 in the crystal.  The figure is 

reproduced with permission from the International Union of 

Crystallography under an open-access license." [108] 

 
Scheme 10. Reagents and Conditions: i) Diethylene dioxide, 

amine, K2CO3, reflux, 2 h. ii) Diethylene dioxide, pyrrolidine, 

K2CO3, reflux, 2 h 

 

      The synthesis of novel triazine sulfonamides was 

achieved using the cyanocarbonimidodithioate 35, which 

was prepared by reacting carbon disulfide with 

aminomethanenitrile in the presence of potassium hydroxide 

in ethylalchol. Compound 35 was then refluxed with 

substituted sulfonyl guanidines in the presence of sodium 

ethoxide in dimethylformamide, yielding potassium triazine 

sulfonamide thiolates 36. Subsequent treatment with 

hydrochloric acid afforded the corresponding sulfanyl 

triazine sulfonamide derivatives 37 in high yields. The 

structures of compounds 37a-d were confirmed utilizing 

spectral data. Compounds 36a-d were further reacted with 

halosugars 38 in dimethylformamide at room temperature, 

resulting in the formation of the corresponding S-glycosides 

39a–e, as outlined in Scheme 11. The reaction of substituted 

1,3,5-triazine-4-thiolate salts 36 and halosugars 38 followed 

an SN2 mechanism, producing β-glycosides from the cis-(α) 
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sugars. At room temperature, compounds 36a-d were 

successfully coupled with activated sugars, leading to the 

formation of substituted 1,3,5-triazine sulfonamide 

thioglycosides 39a-e. The structures of 39a-e were confirmed 

through ¹H-NMR, ¹³C-NMR, and elemental analysis [109]. 

 
 
Scheme 11. Reagents and conditions: i) Sodium ethoxide, DMF, 

reflux, 0.5-1h. ii) Hydrochloric acid, H2O, RT, 5 min. iii) DMF, RT, 

24h. iv) KOH, DMF, RT, 24h. 

 

      The in vitro antiviral evaluation of the compounds against 

the HCoV-229E virus revealed that some exhibited 

promising activity. Compounds 37a, 37b, 37d, 39d, and 39e 

demonstrated moderate to low antiviral activity (27.65%, 

24.41%, 24.17%, and 29.7%, respectively) against the low-

pathogenic HCoV-229E virus, compared to remdesivir 

(67.2%) at a concentration of 100 µg/mL. 
 

      Additionally, there in vitro antiproliferative effects were 

assessed against the NCI-60 cancer cell lines. Among them, 

compound 37a emerged as the most potent, exhibiting the 

lowest cell growth promotion against CNS cancer SNB-75 

(GP = 65.22%) and renal cancer UO-31 (GP = 67.34%) [82]. 

4.5. Fatty Acyl Conjugation of Triazine Derivatives 

 

      Fatty acyl conjugation was explored as a strategy to 

enhance remdesivir's pharmacokinetic properties. While 

monofatty acyl derivatives such as 43b showed improved 

metabolic stability (77.9% intact after 4 hours in human 

plasma compared to 47% for RDV at 2 hours), their antiviral 

potency was lower than that of RDV. In contrast, difatty 

acylation significantly reduced activity against SARS-CoV-

2, indicating that careful structural tuning is necessary to 

balance stability and efficacy. These findings highlight the 

potential of fatty acylation as a prodrug strategy, albeit with 

the need for further refinement to achieve optimal antiviral 

performance [110]. 
 

      This study presents the synthesis and characterization of 

mono- and di-fatty acyl conjugates of remdesivir (RDV) and 

evaluates there in vitro antiviral activity against SARS-CoV-

2, an Ebola virus transcription- and replication-competent 

virus-like particle (trVLP) system, and infectious Ebola virus 

[110]. 
 

      Among the synthesized compounds, the most potent 

monofatty acyl conjugate was 43b, which contains a 4-

oxatetradecanolyl modification at the 3′ position. Monofatty 

acyl conjugates, including 3′-O-tetradecanoyl 43a (IC50: 2.3 

μM in VeroE6, 0.24 μM in Calu3), 3′-O-4-

oxatetradodecanoyl 43b (IC50: 2.0 μM in VeroE6, 0.18 μM 

in Calu3), and 3′-O-(12-ethylthiododecanoyl) 43e (IC50: 2.4 

μM in VeroE6, 0.25 μM in Calu3), exhibited lower activity 

than RDV (IC50: 0.85 μM in VeroE6, 0.06 μM in Calu3). 

However, difatty acylation significantly reduced RDV’s 

antiviral activity against SARS-CoV-2, as observed in 

conjugates 44a and 44b, when compared to monofatty acyl 

derivatives 42a-e and 43a-e [110]. 

Metabolic stability studies revealed that 77.9% of compound 

43c remained unchanged after 4 hours of incubation in 

human plasma, whereas only 47% of the parent RDV was 

detected at the 2-hour time point. These findings highlight the 

potential of fatty acylation to enhance RDV’s half-life. 

Additionally, several monofatty acyl conjugates, including 

42b, 42e, and 43b, demonstrated antiviral activity 

comparable to RDV in the Ebola trVLP system. 
 

      A remarkable reduction in viral RNA synthesis was 

observed for selected compounds 42a and 43b, aligning with 

their IC50 values. These results suggest that monofatty acyl 

conjugates of RDV could serve as long-acting antiviral 

agents or prodrugs with improved pharmacokinetic 

properties [110]. 

 

5. The Selection of Specific Triazine Analogs 

and Their Potential Advantages Over Other 

Antiviral Compounds 

 
      Triazine-based compounds have emerged as promising 

antiviral agents due to their diverse functionalization 

potential, favorable pharmacokinetic properties, and broad- 
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spectrum activity against various viral targets. The selection 

of specific triazine analogs for antiviral drug development is 

justified based on multiple factors, including their structure-

activity relationship (SAR), efficacy against viral proteases 

and helicases, and their ability to achieve favorable 

bioavailability and metabolic stability. 
 

5.1. Advantages of Triazine Analogs Compared to Other 

Antivirals 
 

 5.1.1. Target-Specific Inhibition 
 

      Novel pyrithiobac (PTB) derivatives, particularly 

compound 3, exhibit selective inhibition of SARS-CoV 

Mpro, an essential protease for viral replication. While the 

IC50 value (4.471 mM) necessitates optimization, molecular 

modeling insights into the binding interactions offer a 

foundation for rational drug design. 

      Morpholine-assisted functionalization of triazines 

resulted in compound 7, which inhibits the human DEAD-

box RNA helicase DDX3X, a host factor essential for viral 

replication. This broad-spectrum mechanism suggests 

potential application beyond SARS-CoV-2. 
 

5.1.2. Enhanced Bioavailability and Pharmacokinetics 
 

      Cyclization strategies with carbonyldiimidazole (CDI) 

led to compound 15, which demonstrated favorable 

bioavailability, plasma exposure, and potent activity against 

SARS-CoV-2 3CLpro. X-ray crystallography confirmed key 

binding interactions, reinforcing its suitability for further  

clinical development. 

   

 

      The synthesis of S-217622, a noncovalent, nonpeptidic 

SARS-CoV-2 3CLpro inhibitor, highlights the application of 

structure-based drug design in achieving potent antiviral 

activity with a once-daily oral dosing regimen. 

 
5.1.3. Superior Potency Compared to Existing Antivirals 
 

      Triazine sulfonamide derivatives, particularly compound 

32, displayed an IC50 of 2.378 μM against SARS-CoV-2, 

significantly outperforming remdesivir (IC50 = 10.11 μM). 

This suggests a potential for triazine sulfonamides to serve as 

more effective therapeutic options. 

      In vitro evaluation of triazine sulfonamide thioglycosides 

revealed that certain derivatives demonstrated moderate 

antiviral activity against HCoV-229E, suggesting further 

refinement could yield broad-spectrum inhibitors. 

 

5.1.4. Synthetic Versatility and Functionalization 
 

      Various synthetic strategies, including traditional s-

triazine synthesis, morpholine-assisted functionalization, 

CDI-mediated cyclization, and cyanodithioiminocarbonate-

based synthesis, enable structural diversity and optimization 

for enhanced antiviral efficacy. 

The fatty acyl conjugation approach improved metabolic 

stability, as demonstrated by compound 43b, which retained 

77.9% integrity after 4 hours in human plasma compared to 

remdesivir’s 47% at 2 hours. This suggests the potential for 

Scheme 12. Reagents and Conditions: i) DIPEA, DCM, CH3CN, 40oC, 5-9h. 
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developing long-acting antiviral prodrugs. 

 

      The selection of triazine-based antivirals is strongly 

supported by their target-specific inhibition, superior potency 

compared to existing drugs, and synthetic versatility. These 

properties provide a compelling rationale for further 

optimization and development of triazine derivatives as 

potential therapeutic candidates for combating SARS-CoV-2 

and other coronaviruses. Future research should focus on 

structural refinements to enhance potency, reduce 

cytotoxicity, and broaden antiviral coverage to ensure the 

clinical success of these novel compounds. 

 

6. Comparison of Synthetic Strategies for 

Triazine-Based Antivirals: 
 

6.1. Traditional S-Triazine Synthesis and Functionalization 
 

      The traditional synthesis of s-triazine-based antivirals 

employs the privileged s-triazine scaffold as a core structure, 

leveraging well-established synthetic routes that typically 

yield high product efficiency. This method allows for 

extensive modifications at multiple positions, facilitating the 

enhancement of bioactivity against viral targets. However, its 

primary limitation lies in the restricted scope for introducing 

novel functionalities, which may hinder further optimization 

for emerging viral threats. Additionally, certain derivatives 

have demonstrated moderate cytotoxicity, necessitating 

careful evaluation in drug development. 

 

6.2. Morpholine-Assisted Functionalization of Triazines 
 

      Morpholine-assisted functionalization of triazines 

involves regioselective modifications using morpholine and 

related reagents, offering improved solubility and 

bioavailability of the resulting antiviral compounds. This 

strategy enables precise fine-tuning of electronic and steric 

properties to optimize biological activity. However, it 

requires stringent reaction conditions to ensure selectivity 

and efficiency. Additionally, compared to other 

functionalization methods, it often involves longer reaction 

times, potentially impacting its practicality for large-scale 

synthesis. 

 

6.3. Cyclization Strategies with Carbonyldiimidazole (CDI) 
 

      CDI-mediated cyclization is employed to enhance 

molecular rigidity and improve receptor binding affinity in 

antiviral compounds. This approach results in highly stable 

bioactive molecules and strengthens interactions with viral 

proteases such as 3CLpro. However, it often leads to low 

yields, approximately 35%, and requires extensive 

purification steps, making large-scale synthesis challenging. 

 

6.4. Synthesis of Triazine Sulfonamides via 

Cyanodithioiminocarbonate 
 

      The reaction of sulfaguanidine derivatives with 

cyanodithioiminocarbonate yields sulfonamide-triazine 

hybrids with broad-spectrum antimicrobial and antiviral 

activity. This method offers high yields and allows for facile 

structural modifications, making it highly versatile. 

However, it necessitates the use of specialized reagents, and 

some derivatives exhibit reduced efficacy against specific 

viral strains, requiring further optimization. 

 

6.5. Fatty Acyl Conjugation of Triazine Derivatives 
 

      Fatty acylation of triazine-based antivirals enhances 

metabolic stability and pharmacokinetics, prolonging plasma 

half-life and improving bioavailability. This strategy has 

been shown to enhance antiviral potency against SARS-

CoV-2 and Ebola. However, certain derivatives may 

experience a reduction in intrinsic antiviral activity, and 

comprehensive metabolic studies are required to confirm 

long-term efficacy and stability. 

 

7. Novel Insights into Triazine-Based Antivirals 

 
7.1. Structural Optimization and Rational Drug Design 
 

      While traditional triazine-based antivirals exhibit 

promising inhibitory activity, their relatively high IC50 values 

indicate that further structural refinement is necessary. For 

instance, compound 3 demonstrated an IC50 of 4.471 mM 

against SARS-CoV Mpro, highlighting the need for 

enhanced binding efficiency. Molecular modeling insights 

suggest that modifying the electronic properties of the 

triazine core—particularly through targeted substitutions at 

key reactive sites—could improve ligand-receptor 

interactions. Future research should explore bioisosteric 

replacements or hybridized scaffolds integrating triazine with 

heterocyclic moieties to optimize antiviral efficacy. 

Additionally, fragment-based drug design (FBDD) can be 

employed to systematically improve ligand efficiency by 

identifying minimal pharmacophores that enhance binding 

interactions. 

 
7.2. Morpholine-Assisted Functionalization: Potential for 

Enhanced Bioavailability 
 

      Morpholine-assisted functionalization has emerged as a 

key synthetic strategy, conferring favorable solubility and 

cell permeability. Notably, compound 7 demonstrated 

inhibition of DDX3X helicase, a critical host factor in viral 

replication. However, the regioselectivity challenges 

associated with morpholine substitution necessitate further 

exploration of alternative heterocyclic analogs, such as 

piperazine or thiomorpholine, to enhance selectivity and 

therapeutic index. Additionally, comparative studies on 

metabolic stability and intracellular retention of morpholine-

functionalized triazines could provide deeper insights into 

their pharmacokinetic advantages. Introducing polyethylene 

glycol (PEG) linkers or dendritic architectures could further 

improve systemic circulation times and reduce renal 

clearance. 
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7.3. CDI-Mediated Cyclization: Efficiency vs. Yield 

Limitations 

      Carbonyldiimidazole (CDI)-mediated cyclization has 

been instrumental in developing triazine-based inhibitors 

targeting SARS-CoV-2 3CLpro. Despite its structural 

benefits, the method suffers from low yields (35%) and 

complex purification steps. To overcome these challenges, 

microwave-assisted cyclization or alternative coupling 

reagents, such as triphosgene or EDCI, could be investigated 

to improve reaction efficiency. Furthermore, a comparative 

mechanistic study of CDI-based cyclization versus classical 

amidation strategies may help identify cost-effective 

alternatives for large-scale drug synthesis. Incorporating 

flow chemistry techniques into CDI-mediated reactions may 

enhance yield reproducibility and scalability for industrial 

production. 

 

7.4. Triazine Sulfonamides: A Potential Paradigm Shift in 

Antiviral Development 
 

      The cyanodithioiminocarbonate-mediated synthesis of 

triazine sulfonamides has yielded derivatives with superior 

potency over established antivirals like remdesivir. 

Compound 32, for example, exhibited an IC50 of 2.378 μM 

against SARS-CoV-2, significantly outperforming 

remdesivir. However, to fully harness the therapeutic 

potential of triazine sulfonamides, a deeper understanding of 

their pharmacokinetics, off-target effects, and resistance 

mechanisms is required. Strategies such as fluorination or 

incorporation of lipophilic side chains may further enhance 

membrane permeability and target specificity. Additionally, 

designing covalent inhibitors that form irreversible 

interactions with viral proteases may lead to prolonged 

therapeutic activity and reduced dosing frequency. 

 

7.5. Fatty Acyl Conjugation: A Double-Edged Sword? 
 

      Fatty acyl conjugation has been explored to extend the 

plasma half-life of triazine derivatives. While monofatty acyl 

derivatives such as 43b exhibited improved metabolic 

stability, they displayed reduced antiviral potency compared 

to RDV. This suggests that fatty acyl conjugation may 

enhance drug pharmacokinetics at the cost of intrinsic 

activity. To address this trade-off, hybrid strategies 

combining fatty acylation with prodrug modifications (e.g., 

phosphoramidate derivatives) should be considered. 

Additionally, in vivo metabolism studies are crucial to 

determine whether fatty acyl derivatives exhibit favorable 

tissue distribution and reduced immunogenicity. Lipid 

nanoparticle formulations could also be explored to improve 

targeted delivery and bioavailability. 

 

7.6. Emerging Directions for Next-Generation Triazine 

Antivirals 
 

      The future of triazine-based antivirals lies in integrating 

computational approaches, such as AI-driven molecular 

docking and QSAR modeling, to predict optimal substitution 

patterns. Additionally, dual-target inhibitors that combine 

triazine derivatives with allosteric modulators of viral 

proteases may offer enhanced antiviral coverage. Further 

exploration of triazine-based conjugates with polymeric 

carriers or nanoparticle formulations could revolutionize 

drug delivery strategies, improving bioavailability and 

targeted release. Investigating the synergistic potential of 

triazine antivirals with host-targeted therapies (e.g., immune 

modulators or autophagy inducers) could provide broader-

spectrum antiviral activity and reduce the risk of resistance 

development. 

 

Conclusion 

 

      The ongoing COVID-19 pandemic remains a critical 

global health crisis, necessitating continuous efforts in drug 

discovery and development. The exploration of triazine-

based compounds and their novel synthetic strategies 

presents promising avenues for effective antiviral treatments. 

The synthesis of triazine-based antiviral compounds involves 

diverse methodologies, each with distinct advantages and 

limitations. Traditional functionalization techniques provide 

robust platforms, while advanced strategies such as fatty acyl 

conjugation and structure-based drug design offer enhanced 

pharmacokinetics and efficacy. A combination of these 

approaches may be key to developing next-generation 

antiviral therapeutics targeting SARS-CoV-2 and other 

coronaviruses. Future research should focus on optimizing 

synthetic routes and evaluating long-term clinical viability. 

By advancing these synthetic approaches, researchers can 

contribute to the development of potent therapeutics, 

ultimately aiding in the fight against COVID-19 and future 

viral outbreaks. The insights provided in this review serve as 

a valuable foundation for further innovation in medicinal 

chemistry, fostering collaboration and progress in drug 

discovery. 
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