
 

* Corresponding author E-mail:   hager.m.salah.92@gmail.com;  hager.m.salah.92@science.helwan.edu.eg    © 2024                                                                          

                                                                                                                                               

Advances in Basic and Applied Sciences 2 (2024) 46-52 
_________________________________________________________________________________________ 

 

Advances in Basic and Applied Sciences 

 

   journal homepage:  https://abas.journals.ekb.eg/ 
 

Ionospheric Scintillation Prediction Model at Low Latitude 

Station Investigating a Machine Learning Technique 
 

 Hager M. Salah1,2*, Daniel Okoh3,4, M. Youssef 1, Ayman Mahrous1,5 

 
1Space Weather Monitoring Center Physics Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795    

 Egypt 
2 Canadian International College in Cairo, Cairo, Egypt  
3National Institute of Geophysics and Volcanology, Rome, Italy 

4United Nations African Regional Centre for Space Science and Technology Education – English (UN-ARCSSTE-E), Obafemi  

 Awolowo University Campus, Ile Ife, Nigeria 
5Department of Space Environment, Institute of Basic and Applied Science, Egypt-Japan University of Science and 

Technology 21934 Alexandria, Egypt 

 

ARTICLE INFO 

 
Article history: 
Received 5 November 2023 
Received in revised form 25 November 2023 
Accepted 21 December 2023 
Available online 31 January 2024 

doi: 10.21608/ABAS.2023.245790.1037 

Keywords: Ionospheric Scintillation, Equatorial ionization anomaly, GNSS, Machine Learning, Feedforward Backpropagation.  

. 

ABSTRACT 

Ionospheric scintillation forecasting and modeling are vital for efficiently tracking satellites and navigation systems. 

Scintillations modulate the amplitude or phase of a signal waveform caused by abnormalities of the ionospheric electron 

density. These fluctuating signals can cause cycle slips, disconnect the receiver signal, and cause lock loss. In the current 

article, we predict the amplitude of scintillation (S4 index) using a machine-learning approach. A feedforward 

backpropagation technique was implemented. For further learning of models regarding the dynamics of the ionospheric F 

layer, we inserted foF2 and hmF2 parameters in the input layer neurons. The ground–based SCINDA data at Helwan, Egypt 

(29.86° N, 31.32° E) from 2009 to 2017 has been considered. The results show that predicted S4 values closely reflect 

observed S4 values for different conditions of the solar cycle 24, with a RMSE of 0.019 and regression of 0.659. The variations 

of ionospheric scintillation near the equatorial anomaly's northern peak have also been conducted during different levels of 

solar cycle 24 based on the ANN. 
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1. Introduction 

    Predicting ionospheric scintillations facilitates the 

implementation of essential mitigation measures to limit 

scintillation effects, enhancing satellite-based systems for 

communication and navigation [1]. Ionospheric scintillations 

are the fast amplitude and phase fluctuations of Global 

Navigation Satellite System (GNSS) signals induced by 

ionospheric electron density anomalies.  They are more 

common after sunset and prevalent in equatorial low-latitude 

zones [2]. Scintillations are more prominent around the two 

peaks of the equatorial ionization anomaly (EIA), which can 

be seen between the latitudes of fifteen and twenty degrees 

north and south of the geomagnetic equator, where electron 

density reaches its maximum [3]. Amplitude scintillations are 

erratic changes in signal intensity that commonly generate 

pseudorange inaccuracies in GNSS transmissions. In the 

existence of scintillations, the number of satellites that can be 

seen necessary for precise positioning services decreases, 

resulting in position error [4]. This circumstance impairs the 

receiver's capacity to receive and track signals [5]. Since the 

scintillations are affected by the spatial and temporal features 

of the ionosphere and the space weather conditions[1], a 

precise selection of the prediction model is necessary because 

of the large datasets and many attributes. Although there are 

many techniques for predicting ionospheric conditions 

utilized by many authors, Artificial Neural Networks (ANN) 

have become a powerful tool for forecasting nonlinear 

ionospheric parameters [6]–[8]. The ANN approaches were 

discovered to be data-dependent, with performance 

improving as the sample size increased [9]. They apply a 

nonlinear function to determine the output as a weighted sum 

of the inputs to accurately predict future trends and behaviors 

for the given data. Several groups have modeled scintillation 

at low latitudes and the equator. Das et al.[10] predicted the 

occurrence probability of the ionospheric scintillation using 

backpropagation feedforward NN over Kolkata, which is 

located in the low latitude region of India during the solar 

cycle 23 from 1996 to 2006. They used the local time, the 

year's month number, and the month's average solar flux as 

the input variables of the developed model. A low-latitude 

scintillation activity forecasting model of VHF/UHF bands 

was developed by Redmon et al.[11] by considering 

observations near the geomagnetic equator from ionospheric 

sounder data. This model was based on ionospheric height 

fluctuations for the F2-maximum altitude but did not include 

any other physical characteristics linked to scintillation. De 

Lima et al.[12] have implemented a model using the 

classification and regression decision tree method for 

studying the correlation between the occurrence of the 

scintillation at the equatorial southern anomaly and the 

magnetic equator, which could be the basis for the ultimate 

creation of a prediction model appropriate for practical use. 

This model has used physical variables like solar flux, 

variations of the geomagnetic activity, the F2 layer's 

maximum height, the velocity of the F2 region, and 

amplitude scintillation. Taabu et al.[13] were presented with 

a feedforward NN trained with a backpropagation algorithm 

(Gradient-Descent algorithm) to investigate and forecast 

scintillation occurrences associated with the ionospheric 

irregularities over Kenya and Uganda using two years of data 

during solar cycle 24's ascending phase from VHF and 

SCINDA. The major disadvantage of this algorithm is the 

very slow convergence for adjusting the network weights. In 

another study, Atabati et al.[14] forecasted the amplitude 

scintillation parameter for a regression of 80% in the one-day 

forecasting for the GUAM station located in the low latitude 

region utilizing a hybrid NN and genetic algorithm technique. 

In this work, an artificial neural network approach is 

represented for predicting the amplitude scintillation S4 

index using ground-based data over the Helwan SCINDA 

station in the northern peak of the EIA. The Feedforward 

Backpropagation technique was investigated for training the 

ANN model. We also introduce an analysis of the 

ionospheric scintillation during different levels of solar cycle 

24 based on the ANN. 

 

2. Data analysis 

 
 

    GPS data was acquired for the purpose of this research 

utilizing a ground-based scintillation network and decision 

aid system (SCINDA) receiver at the low latitude region in 

Egypt (LAT: 29.86°N, LONG: 31.32°E, and MLAT 

29.94°N). The receiver can track two signals simultaneously 

at 1580 MHz and 1230 MHz. The data set included all the 

data accessible from the station from 2009 to 2017, during 

different levels of solar cycle 24. The GSV4004 receiver 

tracks the amplitude scintillation at a 50 Hz sampling rate. In 

the present paper, we predict ionospheric scintillations using 

the S4 index. The S4 index was calculated for each 1 minute 

using the raw signal intensity's normalized standard deviation 

(𝑆𝐼) in each relevant epoch, as expressed in equation (1) [15]. 

𝑆4 =  √
〈𝑆𝐼2〉 − 〈𝑆𝐼〉2

〈𝑆𝐼〉2
 (1) 

Multipath effects may be present in S4 calculations using this 

formula, especially at low elevation angles. In this 

investigation, we excluded satellite epochs at elevation 

angles less than 30° to reduce the multipath influence on the 

observation, as in the previous studies [2], [16]. Depending 
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on the model's requirements, S4 is utilized for time intervals 

varying from a few seconds to several hours. In our study, the 

S4 observations were calculated using the mean values for a 

five-minute time interval [13].  

 

    This study uses factors influencing the ionosphere that can 

affect the creation of ionospheric scintillation as inputs to our 

model. Among these parameters, the maximum height 

(hmF2) and F2’ vertical critical frequency (foF2)[17] 

influence the F2 layer, the primary layer of the phenomenon 

of ionospheric scintillation [12]. Taking advantage of the 

International Reference Ionosphere models that can provide 

long-term data at our station that has no Ionosonde data [18], 

we used data from IRI-2016. It is primarily regarded as a 

reliable ionospheric model [19], collected from 

(https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitm

o.php), offered by the Community Coordinated Modeling 

Center. This work additionally involves the use of solar and 

geomagnetic activity indices. This model uses number 

sunspots (SSN) and solar radio flux at 10.7cm wavelength 

(F10.7) as indicators of solar activity levels. The symmetric 

disturbances of the H-component (SYM-H)[20] and the 

international planetary geomagnetic index (Kp) indices are 

employed to determine the geomagnetic activity level. These 

indices were acquired from the National Aeronautics and 

Space Administration's OMNIWeb (https: 

//omniweb.gsfc.nasa.gov/). 

 

3. Methodology 
 

   The artificial neural network (ANN) is a machine learning 

method that may be employed to model or predict linear and 

nonlinear variables like ionospheric scintillation. This 

method is less affected by noisy data and can handle large 

numbers of observations [21]. ANN comprises three layers: 

an input layer, one or more hidden layers, and an output layer. 

Each layer includes some nodes, or neurons, and the 

communication weights that link the nodes [22]. The input 

dataset is multiplied by the assigned weights, and the sum is 

fed into neurons. Each neuron has a transfer function that 

adopts this input value and determines the neuron's output 

value. Then, the difference between the predicted and actual 

output is calculated, and each neuron's weights and biases are 

adjusted to reduce the error, a technique called 

backpropagation. The process ends when the error rate 

between the model's output data and the target data entered 

as input into the model is as low as possible [23]. In order to 

train the feedforward neural network using backpropagation, 

use the Levenberg-Marquardt algorithm (trainlm). The 

trainlm uses optimization for updating weights and bias, 

which renders it the most productive backpropagation 

approach, with few iterations required to be more general 

[24]. 

    

    The present model implements a typical fully linked 

feedforward NN with backpropagation. The prediction 

model comprises an input layer made up of a collection of 

inputs that feed the network's input patterns. The input layer 

is made up of the day number of the year (DOY), the 

universal time UT (HR), F10.7, SSN, Kp index, SYM-H 

index, IRI-foF2 parameter, and IRI-hmF2 parameter. DOY 

and HR were divided into two periodic components, as 

defined by equations (2) and (3), that provided for a 

numerically continuous pattern of data [25], [26]. After the 

input layer, there is one hidden layer. After that, an output 

layer generates the output results, the ROTI index, was used 

as the prediction model's output parameter. 

 

𝐷𝑂𝑌𝑠 = sin (
2𝜋 × 𝐷𝑂𝑌

365.25
) , 𝑎𝑛𝑑 𝐷𝑂𝑌𝑐 = cos (

2𝜋 × 𝐷𝑂𝑌

365.25
) 

 

(2) 

 

𝐻𝑅𝑠 = sin (
2𝜋 × 𝐻𝑅

24
) , 𝑎𝑛𝑑 𝐻𝑅𝑐 = cos (

2𝜋 × 𝐻𝑅

24
) 

 

(3) 

 

The number of hidden layer neurons is crucial to ANN 

training. We varied the number of hidden layer neurons from 

1 to 30. We calculated the error rate between the predicted 

scintillation values and the observed scintillation 

measurements to determine the number of hidden neurons. 

The parameter used is the root-mean-squared errors 

(RMSEs), described in equation (4)[27]. We identified the 

best model and number of hidden neurons with the lowest 

RMSE on the training and test datasets. 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑆4𝑜𝑏𝑠𝑖 −  𝐴𝑁𝑁𝑝𝑟𝑒𝑑𝑖)2𝑛

𝑖=1

𝑛
 

(4) 

 

 

where (𝑆4𝑜𝑏𝑠𝑖) are the observed S4 measurements 

corresponding to the predicted S4 (𝐴𝑁𝑁𝑝𝑟𝑒𝑑𝑖), and (𝑛) is 

the number of data points.  

 

4. Results and Discussion 

     

    The first phase of the modeling entailed determining the 

inputs that will aid the network's learning of 

scintillation patterns of behavior throughout 

different circumstances. We built four different ANN models 

with different sets of input layer neurons. The models were 

used to investigate whether additional input layer neurons 

improved the performance of the networks. The different 

ANN models are described in Table 1. The first model 

comprises only the seasonal and daily variations, while we 

added the solar cycle variations to the second model. We 

added the geomagnetic variations and the ionospheric 

parameters to the third and fourth models, respectively. 

For each model, the number of hidden layer neurons was 

changed from 1 to 30. Each trained neural network was then 

utilized to predict the S4 values for the validation and testing 

data sets. Testing and validating the model optimizes the 

model parameters to obtain an unbiased assessment of the 

final model fit to the training data. 

https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php
https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php
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Table 1. Different Neural Network models. 

ANN 

models 

Sets of Input layer neurons 

ANN1 DOYs, DOYc, HRs, HRc   

ANN2 DOYs, DOYc, HRs, HRc, SSN, 

F10.7 

ANN3 DOYs, DOYc, HRs, HRc, SSN, 

F10.7, SYMH, Kp 

ANN4 DOYs, DOYc, HRs, HRc, SSN, 

F10.7, SYMH, Kp, IRI-hmF2, IRI-

foF2 

 
We used 30% of the available dataset to validate and test the 

developed neural network model. For neural network 

predictions, the root mean square errors (RMSEs) were 

calculated using the corresponding measured S4 values as a 

basis for comparison. Figure 1 demonstrates how these 

calculated RMSEs compare to their respective counterparts 

for the four models. It strongly suggests that the fourth ANN 

model outperforms the other models. This is supported by the 

fact that the RMSEs of this model were typically lower. The 

selectedmodelnculude  both F2 ionospheric characteristics a

s inputs, hmF2, and foF2, which affect the scintillation 

behavior and consequently facilitate the network's learning of 

S4 index behavior during different phases of the solar cycle. 

The optimum performance of the selected model occurred at 

8 neurons in the hidden layer, with an RMSE of 0.018. 

Therefore, the ANN algorithm designed for S4 index 

modeling to predict ionospheric scintillation is represented in 

Figure 2. 

 
Figure 1. RMSEs of the four different neural network 

models were trained to test the validity of inputs and the 

number of hidden neurons. 

    The results of the predicted ionospheric scintillation on 

the S4 index using Helwan GPS-SCINDA data over the 

northern crest of the equatorial anomaly are shown in this 

section to evaluate the calibration process. Figure 3 

compares predicted S4 values using ANN to similar 

ground-based data. 

 
Figure 2. ANN algorithm designed for S4 index modeling. 

 
Figure 3 a to c are, respectively, indicating the training, 

validation, and test data sets. Figure 3d represents all the data 

sets used for the prediction process. The correlation 

coefficient’s values (R) and RMSE between the predicted 

ANN-S4 and observed Ground‐S4s are illustrated in the 

figures. According to Figure 3 a to c, the correlation 

coefficients for the training, validation, and test data sets are 

0.654, 0.670, and 0.675, respectively. On the other hand, for 

the training, validation, and test data sets, the RMSE values 

of the predictions from the observations are 0.019, 0.019, and 

0.018, respectively. The obtained comparison of the RMSEs 

and correlation coefficients reveals that the values are not 

statistically different for the three data sets. This implies that 

the ANN approach used to predict S4 generalizes effectively; 

if not, it would outperform the validation and test data sets on 

the training data set. Effective generalization is required for 

neural networks since the networks must function well on 

data that wasn't utilized for training. In the case where all data 

sets are used, in Figure 3d, the modeled S4 and the observed 

S4 exhibit an intermediate correlation with a correlation 

coefficient of 0.659. This result proves that the predictions 

and measurements are related in a reasonable manner. The 

root-mean-square value of the differences is 0.019. This 

value represents that the artificial neural network model can 

be utilized to forecast the S4 index with a typical error of less 

than 0.019. 

    We compared the results of the diurnal variations of the S4 

index estimated by the ANN model with the observations of 

corresponding data from the GPS-SCINDA station. The 

comparison contains the daily data for three months in three 

different seasons of the winter solstice (January), equinox 

(March), and summer solstice (July) in 2010 (minimum solar 

activity), 2012 (moderate solar activity), and 2014 

(maximum solar activity). Figure 4 shows the S4 value over 

three days from each season during different solar activity 

levels to detect ionospheric scintillation. The days in January, 

March, and July are from the left column to the right. While 

the upper, second, and third panels introduced the years of 

2010, 2012, and 2014, respectively. The observations of the  



Hager M. Salah et al. / Advances in Basic and Applied Sciences 2  (2024) 46-52 

 

 

50 
 

 
Figure 3. Plots of predicted S4s index versus corresponding observed Ground‐S4s illustrated using (a) training data set, (b) 

validation data set, (c) test data set, and (d) all data sets. 

 
  Figure 4. The ANN modeled and observed S4 in different solar activity levels during different seasons. 
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S4 index from GPS-SCINDA are represented in the blue line, 

while the predictions from the ANN model are described in 

the red line. The threshold value of S4 utilized in this figure 

to determine the presence of ionospheric scintillation was 

0.2. The days were chosen because they provide a reliable 

depiction of ionospheric scintillation during various seasons 

and phases of the solar cycle.  

    As shown in Figure 4, the diurnal variation of the modeled 

ANN-S4 index pattern closely matches the daily GPS-S4 

index trend for the different phases of the solar cycle 24. This 

comparison indicates that the ANN model provides a good, 

predicted value for the ROTI index. The ionospheric 

scintillation that occurred in 2014 (high solar activity) was 

higher than in 2012 (moderate solar activity) and 2010 (low 

solar activity). These results confirm that ionospheric 

scintillations occur at a higher rate during the peak of solar 

cycle 24, with the highest solar activity level. Furthermore, 

the S4 values for the days of the different seasons show that 

the ionospheric scintillation in March is higher than in 

January and July, respectively. The pattern of the scintillation 

occurrence during the current study period suggests that the 

amplitude scintillation over Helwan at L-band frequencies 

revealed peak occurrence during the equinoctial months 

rather than at the solstice. These results are confirmed by the 

previous studies [28], [29]. Paznukhov et al. [29]believed the 

alignment of the solar terminator and local geomagnetic field 

could sufficiently explain the seasonal climatology 

of scintillations observed by GPS in Africa. 

 

Conclusions 

In the current paper, we presented the prediction results of 

the ionospheric amplitude scintillation S4 index utilizing a 

feedforward backpropagation neural network approach with 

fair accuracy over a single station in the EIA's Northern peak. 

We found that the ionospheric parameters of the ionospheric 

F2-layer, hmF2 and foF2, presented better results for the 

modeling approaches. Our approach introduced a predicted 

pattern of the S4 index that closely matches the observed 

pattern by the ground-based data. The regression of the 

model is 0.659, while the RMSE value is 0.019. Our findings 

demonstrate that ionospheric scintillations occur at a higher 

rate during the peak of solar cycle 24 with the maximum solar 

activity level than in the moderate and low solar activity, 

respectively. Furthermore, the trend of scintillation 

occurrence indicated that amplitude scintillation increases 

during the equinoctial months rather than at the solstice. 
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