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ABSTRACT 

The glass structure 50P2O5–30Na2O–10CaO–(10-x)Al2O3–(x)Sm2O3 was prepared using a standard melt 

annealing method, where x ranged from 0 to 8 mol% and with different Sm2O3 (x) concentrations. The impact 

of Sm3+ ions in the produced glass network has been investigated using combined structural and optical properties. 

We looked at structural and optical factors like density, molar volume, and other optical properties. It was 

demonstrated that glassy samples are amorphous using X-ray diffraction. Empirical and experimental densities 

and molar volume are found to be having the same trend with increasing Sm2O3 contents. Fourier transform 

infrared absorption spectra (FTIR) have been carried out and analyzed using the deconvolution analysis route. 

Notable changes are observed within the fingerprint region from 450 cm–1 to 1700 cm–1 and prominent peaks are 

assigned to their respective phosphate vibrational groups. UV–VIS–NIR spectral data are plotted and different 

optical parameters such as optical energy gap, absorption and extension coefficients are calculated and interpreted 

in terms of direct and indirect transitions and correlated to their respective structural variations and state of 

samarium ions.  

. 

1. Introduction 

During the last decades' glasses with different formers 

(silicate, borate, phosphate, and their combinations) doped 

with variable mass fractions of rare earth ions are extensively 

used in broadband optical amplifiers [1–3], optical 
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temperature sensors, near-infrared solid-state lasers [4], up-

conversion systems [5–7] and optical coherence tomography 

[8]. According to 4f-4f intra-configuration transitions rare 

earth oxides are considered to be optical active materials and 

play a vital role in the technology of lighting displays. 

Oxyfluoride phosphate glasses that are doped with a specific 

percent of specified rare earth oxides can be considered 

superior host materials in the process of laser production [9–

18]. Glasses are painstaking as a good host for the higher 

content of rare earth ions owes an amorphous nature 

compared to other glassy matrices. The optical and structural 

characteristics of newly designed materials may be well 

defined using different spectroscopic routs including Infrared 

and Ramman spectroscopy depending on the type of host 

matrix and practical applications at which it may be used 

including the source of glass host emitting visible light [19–

25] or (NIR) near-infrared radiation [26–28]. Contrasting 

with lead-free phosphate host glassy matrix, researchers 

devise less documentation of NIR and Vis. luminescence 

studies of rare earth-doped lead phosphate glasses. Based on 

spectroscopic and thermal characterization techniques, it can 

be concluded that glasses containing rare earth oxides owe a 

fascinating thermo-optical characteristic [29-31] in addition 

to the non-linear optical properties [29–31]. In cerium-doped 

lead phosphate glass, significant advancements in the second 

harmonic generation (SHG) are also seen [33]. In general, the 

addition of PbO to phosphate glasses raises the host's 

refractive indices, which is advantageous when producing 

holey fibres. These glasses are appropriate for optical device 

applications and a potential contender for radiation 

protection systems in the future, as evidenced by the 

observed shift in the absorption edge to higher energies with 

increased PbO content [34]. Various physical and 

spectroscopic characteristics of the different Sm3+ doped 

sodium aluminum phosphate glasses in the nominal 

composition (P2O5–Na2O–CaO–Al2O3) including density, 

molar volume in addition to optical electronic transition in 

the UV/Vis/NIR region (transmission (T), absorption (A), 

and refractive index (n)) combined with structure 

information supplied by XRD have been claimed in this work 

to inspect the effect of samarium oxide and aluminum oxide 

molar ratio on sodium phosphate glass for visible devices as 

optical fiber amplifiers applications.  

 

2.  Materials and Methods  

2.1 Preparation of the glasses 

Transparent glasses of nominal composition 50 P2O5 – 30 

Na2O –10 CaO – (10-x) Al2O3 – (x) Sm2O3 where x from 0 to 

8 mol% are prepared via ordinary melt route. P2O5 was 

obtained using ammonium dehydrogenates phosphate 

(NH4H2PO4), and Samarium oxide supplied by Sigma 

Aldrich company was added to the basic composition at 

expense of both main components of the base host glass. The 

weighed batches are mixed thoroughly and ground for 20-30 

min in a ball mailing machine calcined for about 1 h in a 500 

°C regulated electric furnace (Vecstar) to evaporate all 

ammonia and water residuals. The temperature was then 

gradually increased to 1300 °C to complete the melting and 

mixing process (which took 2 hours) to produce samples 

devoid of bubbles. To obtain a uniform, bubble-free viscous 

melt, viscous melts are switched at regular intervals. The 

obtained melt was then put into moulds made of stainless 

steel that met the specifications. To relieve the samples' 

thermal stresses, the produced glass samples are immediately 

placed in an annealing muffle furnace set at 300 °C. 

 

2.2 Sample characterizations 

X-ray diffraction (XRD) is a strong non-destructive 

method in which crystalline materials are characterized. It 

offers data about constructions, stages, and preferred 

orientations of crystals (texture). X-ray diffraction peaks are 

created at particular corners from each set of lattice planes in 

a sample by constructive interference of the X-ray beam. The 

maximum intensities are determined by the lattice atom 

distribution. Because of this, an XRD-Shimadzu 

diffractometer's pattern of X-ray diffraction can be used to 

identify regular atomic structures in a given material. The 

glass system was examined using an advanced X-ray powder 

diffractometer (Brucker D8) and crystallographic data 

software (Topas 2) at room temperature. Cu target and Ni 

filter are used to produce a monochromatic Cu- Kα X-ray 

beam with a wavelength of 1.452 radiation running at 40 kV 

and 30 mA at a pace of 2°/min by placing a thin flat sheet in 

the path of the X-ray beam. The diffraction data was collected 

for 2θ values ranging from 4° to 70°. Using the conventional 

Archimedes method, density is measured, and the results are 

used to value a number of structural factors. Many inorganic 

compounds' chemical structures are ascertained using Fourier 

Transform Infrared (FTIR) Spectroscopy, which is also 

utilised for qualitative and quantitative analyses of organic 

molecules. Using a Fourier transform computerised infrared 

spectrometer type (JASCO, FT-IR-6800, Japan), the FTIR 

absorption spectra of the glass samples are shown in terms of 

the wavenumber (range: 4000-400 cm-1 with resolution 0.07 

cm-1) at atmospheric temperature. A two beam 

spectrophotometer (JASCO model V750 Japan) 

encompassing the range 200-2500 nm at room temperature 

was used to record the optical absorption spectral data for a 

highly polished sample both before and after adding dopant 

samarium oxide to the glasses. The various 1155 

measurement points are used with a sample interval of 2 nm 

and a resolution limit of 0.2 nm. 

 

3. Results and Discussion  

3.1. Structural analysis 
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    Fig. 1 presents the XRD diffraction pattern of powdered 

samples from Sm3+ ion doped sodium phosphate glass 

50P2O5- 30Na2O – 10CaO – (10-x) Al2O3 – (x) Sm2O3 (x = 

0, 2, 4, 6 and 8 mol%). Obtained data confirm the 

amorphous nature of all prepared samples without any 

evidence for crystallization supported by the absence of any 

sharp peaks within the measurement region.  
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Fig. 1: X-ray diffraction patterns of Sm3+ ion doped 

aluminum sodium phosphate glass (x = 0, 2, 4, 6 and 8 

mol%). 

 

3.2 Density and the Molar volume 

Density in relation to molar volume of Sm3+ ion doped 

aluminum sodium phosphate glass [50 P2O5- 30 Na2O – 10 

CaO – (10-x) Al2O3 – (x) Sm2O3] (x = 0, 2, 4, 6 and 8 mol%) 

was measured. The results are introduced in Fig. 2 and Table 

1. Both physical quantities (density , molar volume VM) are 

calculated according to relations: 

𝜌 = [
𝑤𝑎𝑖𝑟

𝑤𝑎𝑖𝑟−𝑤𝑙
]𝜌0    (1) 

𝑉𝑀 = [
𝑀𝑤(𝑔𝑙𝑎𝑠𝑠)

𝜌𝑔𝑙𝑎𝑠𝑠
]    (2) 

where ρ is the sample density, 𝜌𝑜 the liquid density, Wair is 

the weight in the air, Wl is the weight in the liquid, VM is the 

molar volume, and Mw is the molar mass. The density of the 

glass samples rises as Sm3+ ion doped increases, as well as 

the molar volume and density, which increases 

proportionally to the Sm3+ ion doped content as shown in Fig. 

2 and listed in Table 1.  

The molar mass of samarium oxide (348.72 g/mol) is heavier 

than the molar mass of Aluminum oxide (101.96 g/mol) [35-

37]. The glass matrix with larger samarium oxide content 

Sm+3 is therefore denser. Moreover, due to the atomic radius 

of Sm+3 ions (242 pm), the rise in molar volume is greater 

than the atomic radius of Al+3 ions (118 pm) [38]. Unusual 

results, however, changed the molar volume and density with 

the same trend in the direction of each other, the usual being 

the molar volume and the opposite density changed. Sm2O3 

has elevated relative molecular mass that opens the glass 

network framework and introduces a surplus quantity of 

structure. Al2O3 acts as a modifier and replacing Al2O3 with 

Sm2O3 causes the total molar volume to increase [39]. 

 

Table 1: Density and molar volume of Sm3+ ion doped 

aluminum sodium phosphate glass  

Sm 

mol % 

Exp 

Density 

(g/cm3) 

Empirical  

Density 

(g/cm3) 

Exp  

MV(cm
3/mol) 

Empirical  

MV 

(cm3/mol) 

0 2.59 2.60 67.79 67.69 

2 2.62 2.69 69.05 67.31 

4 2.67 2.78 69.56 66.95 

6 2.71 2.86 70.50 66.60 

8 2.75 2.95 71.79 66.30 
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Fig. 2: Variation of a) the empirical density and the empirical 

molar volume and b) the experimental density and the 

experimental molar volume of aluminum sodium phosphate 

glass with different Sm2O3 contents. 

 

3.3 Fourier Transform Infrared (FTIR) Spectroscopy 

One method to evaluate the chemical composition of 

https://www.google.com.eg/search?q=Almonium&nfpr=1&sa=X&ved=0ahUKEwjZy4Lug-XcAhXHK5oKHZf4CP8QvgUIJSgB&biw=1600&bih=763
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such samples is the FT-IR technique where the absorption, 

transmission, or reflection IR spectra show some peaks in 

terms of the wavenumber that corresponds to the existence 

of a kind of atomic bond for a specific molecule. FT-IR 

absorbance spectrum of Sm3+ ion doped aluminum sodium 

phosphate glass matrix is recorded in Fig. 6. The aluminum 

phosphate glass FT-IR range was diverse with the 

aluminum coordinating number and the coordinating group 

state (''isolated'' or condensed'') in addition to the coupling 

among neighboring groups. Absorption bands in the region 

between 530-400 cm-1 may be assigned to the isolated 

AlO6octahedra while that lie between 680–500 cm-1 are 

related to the condensed AlO6 octahedra [40].  
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Fig. 3: FTIR of Sm3+ ion doped aluminum sodium phosphate 

glass (x = 0, 2, 4, 6 and 8 mol%) 

 

Additionally, the condensed AlO4 tetrahedra found in 

the region of 900-700 cm-1 are indexed whereas the isolated 

AlO4 tetrahedra found in the range of 800-650 cm-1 are 

identified [40]. At 978 and 1170 cm-1, a pair of peak bands 

connected to the Al-OH bonding are found [42]. The 

''isolated'' and ''condensed'' AlO4 tetrahedra and ''isolated'' 

and ''condensed'' AlO6 octahedra's characteristic absorption 

zones of Al-O stretching vibrations are indexed. Due to the 

stretching vibration of Sm(III)-O groups, the absorption 

bands in Fig. 3 are linked to a very small number of Sm+3 

ions at 860 cm-1 [43]. Otherwise, the bands' peak at 685.6 

cm-1 correlated with the Sm-O-H vibration and the 
broadband at 698 cm-1 attributable to Sm-O-Sm vibrations 

are both present [44]. But a little IR peak at 3400 cm-1 was 

found and linked to the O-H stretching vibration [45]. 

Additionally, showed vibrational bands at 1287 cm-1 

(detonate-symmetrical PO2- groups vibrations; this region 

may also contain bands from P=O stretching vibrations), 

1082 cm-1 (a regular vibrational mode in PO4
3- group 

arising from n3-symmetric stretching), and 897 cm-1 (due to 

P-O-P asymmetric bending vibrations). There may be 

bands in this area that are caused by pyrophosphate groups 

(P2O7
4). There are P-O-H wagging and rocking vibrational 

bands at 590 and 530 cm-1 [46]. 

3.4 Optical properties  

The physical properties of the glasses, the calculated 

values of density (ρ) and refractive index along with other 

physical parameters such as absorbance coefficient, optical 

band gap energy, permittivity (ε' and ε''), extinction 

coefficient, the refractive index was calculated using 

conventional formulae. 

 
3.4.1 Absorbance Coefficient  

The optical absorption spectrum of Sm3+ ion doped 

aluminum sodium phosphate glass matrix deduced in the 

UV-Visible-NIR spectrum (200-2400 nm) region was shown 

in Fig. 4. This spectrum consists of inhomogeneous bands of 

diverse intensities due to f-f transitions of Sm3+ ions to 

various excited states. The optical absorption spectrum 

displays thirteen transitions bands at wavelengths 249, 401, 

470, 942, 1075, 1223, 1372, 1471, 1529, and 1593 nm which 

corresponds to excited states 6H9/2, 4D3/2, 4L17/2, 5P3/2, 5P5/2, 
4L11/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6F1/2 and 6H13/2, 

respectively. Higher energy transitions in the UV-Visible 

range (300 - 500 nm) and lower energy transitions in the NIR 

area (1000 - 2400 nm) are the two groups into which these 

transitions are categorized [47, 49]. Higher energy transitions 

and lower energy transitions are separated into two groups, 

respectively. These transitions' UV-visible area intensity is 

lower than their NIR region intensity. This is explained by 

the host glass's enhanced UV-visible absorption and the 

overlaying of different 2S+1LJ levels. The transitions from 

the 6H5/2 energy level to the 6F, 6H, and 6P are all allowed 

for spin (ΔS =0), however the transitions from the 6H5/2 to 

4I, 4M, 4L, and 4D are disallowed for spin (ΔJ=0, ±1). 

However, the NIR transition 6H5/2→6F7/2 (1223 nm) is a 

hypersensitive transition because of its great intensity. The 

strength of this transition can be influenced by the 

surrounding environment of the ligand that follows the 

selection rules ΔS=0, ΔL≤2, and ΔJ≤2 [50–52]. 
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Fig. 4: (a) Optical absorption and electronic spectra and 

absorption coefficient of prepared glasses in the range from 

300 to 500 nm and (b) NIR absorbance spectral date with the 

range from 1000 to 2400 nm 

 

Fig. 5: Schematic representation of the Sm3+ energy level 

diagram (up arrows) and emission routes (down arrows) are 

indicated (Lin et al., 2005) [52]. 

 

3.4.2 Optical band gap energy 

According to Fig. 6, raising the Sm2O3 concentration 

causes a reduction in the optical energy gap. Table 2 

displays the direct band gap as a function of photon energy 

for each glass system. Using the relation [53], the 

absorption (A) is changed into the absorption coefficient 

(α): 

α(ν) = (1/d)  ln (Io/I)     (3) 

where d is the sample thickness and ln(Io/I)is the absorbance 

(A). Using the conventional relation suggested by Davis and 

Mott function, the absorption (A) can be converted into a 

value proportionate to the absorption: [54,55] 

αhν= B(hν−Eg)n     (4) 

Tauc plots of (αhν)n versus hν (with n=1/2, applicable for a 

direct bandgap material), as shown in Fig. 6 and the extracted 

band gap plotted as a function of Sm2O3 concentration. The 

direct band gap is found to decrease from 5.78eV for x = 0.0 

mol %to 5.51eV for x = 8.0 mol %. Many factors may control 

the values of optical band gap for studied materials including 

the degree of structural ordering (crystallinity)-disordering 

(amorphoucity), the type of dopants (donor/ acceptor), and/or 

carrier concentration in addition to the creation of materials. 

The formation of a phosphate glass matrix, which contributes 

to bonding defects in the network matrix of the equipped 

glasses due to the inclusion of rare earth dopant, tailors the 

band structure of the glasses at UV-edge, is credited with this 

decrease in optical band gap. 
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Fig. 6: The Optical band gap energy of Sm3+ ion doped 

aluminum sodium phosphate glass  (x = 0, 2, 4, 6 and 8 

mol%) 

According to the Davis Mott approach, defects will 

produce localized states in the band gap [56]. As a result, the 

width of the localized states increases because of the increase 

in defect concentration and consequently reduces the Eg, this 

can be confirmed from the values of Urbac energy (table 2) 

which specify the width of tail states. Fig.7 shows the 

variations of Ln α versus h   which obeys Urbac function: 

∝=∝0 𝑒
ℎ𝜈

𝐸𝑢 

where αo is a constant, h is the photon energy and Eu is the 

Urbac energy. The slopes of the straight lines of these curves 

were used to determine the values of EU. Obviously, the value 

of EU increases with the increase of Sm doping, indicating the 

presence of structure disorder due to the formation of certain 

defects and/or impurities that create localized states in the 

band structure 
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Table 2: Calculated optical energy gap in relation to Sm2O3 

concentration 

Samp

le          
Sm 0% 

Sm 

2% 

Sm 

4% 

Sm 

6% 

Sm 

8% 

Eg 

(eV) 
5.784 5.667 5.570 5.546 5.514 

EU 

eV) 
0.57803 0.58391 0.58229 0.58333 0.65333 

4.6 4.8 5.0 5.2

-2.0

-1.5

-1.0

-0.5
 CaSm 0

 CaSm 2

 CaSm 4

 CaSm 6

 CaSm 8

 

 

L
n

(
) 

(c
m

-1
)

Photon Energy (ev)

 

Fig. 7: The Urbac energy of Sm3+ ion doped aluminum 

sodium phosphate glass (x = 0, 2, 4, 6 and 8 mol%) 

 

3.4.3 Refractive index, Extinction coefficient, and complex 

dielectric constant 

The local field of the host material and the polarizability 

of ions are related to the refractive index. For every device 

design, including optical implementations like filters, the 

determination of the refractive index is crucial [57]. Equation 

[58] was used to determine the refractive index: 

A + T + R = 1    (5) 

where A, E and T are absorbances, transmittance, and 

reflectance respectively. The refractive index (n) therefore, 

can be calculated using equation (6) shown in Fig. 8 [58]: 

R =
(n−1)2

(n+1)2
     (6) 

It was concluded that there is an inverse relationship between 

refractive index and optical band gap and can be correlated 

with the density and molar volume of the synthesized 

materials [59, 60]. It was observed that density changes from 

2.617 to 2.731 g/cm3 to an energy gap that change from 5.784 

eV to 5.514 eV. The conclusion reached was that the 

refractive index can be seen of as a compositional variable 

that is affected by a variety of other parameters, such as the 

optical basicity of glass, the polarizability of ions within the 

network structure, and the coordination number of ions [61]. 

Typically, the equation given in Fig. 9 is used to compute the 

extinction coefficient: 

𝑘 =
𝛼𝜆

4𝜋
       (7) 

where the absorption coefficient and wavelength, 

respectively, are represented by α and λ. It is seen that the 

extinction coefficient (k) increases with increasing Sm3+ ion 

content within the aluminum sodium phosphate glass from 

0.0 to 1.0 mol.%. The relationships illustrated in Fig. 10 are 

used to obtain the dielectric constants: 

𝜀′ = 𝑛2 − 𝑘2     (8) 

𝜀′′ = 2𝑛𝑘       (9) 

where n is the refractive index, k is the extinction coefficient, 

ε′ the real part and ε″ is the imaginary part. 
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Fig. 8: Refractive index of Sm3+ ion doped aluminum sodium 

phosphate glass (x = 0, 2, 4, 6 and 8 mol%) 
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Fig. 9: Extinction coefficient of Sm3+ ion doped aluminum 

sodium phosphate glass (x = 0, 2, 4, 6 and 8 mol%). 
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Fig.10: (a) The real permeability (ε') and (b) the imagine 

permeability (ε'') vs. the wavelength of Sm3+ ion doped 

aluminum sodium phosphate glass (x = 0, 2, 4, 6 and 8 mol%) 

 

Conclusions  
The current research demonstrates the impact of glass 

phosphate Sm3+ ion, the molar volume, and density are 

researched to portray the phosphate glass Al3+ ion impact and 

the uncommon increase in density and molar volume. As the 

samarium content increases, the density of the glass samples 

increases. Fourier transforms infrared FT-IR absorption 

spectra of all samples to maintain the phosphate glass 

matrix's primary characteristic absorption band and approves 

the existence of aluminum in both tetrahedral and octahedral 

conditions. Due to f-f transitions of Sm3+ ions to distinct 

excited states, the optical absorption spectrum of the Sm3+ 

ion-doped aluminium sodium phosphate glass matrix 

contains inhomogeneous bands of different intensities. The 

optical spectrum shows that these transitions' UV-visible 

area intensity is lower than their NIR region intensity. With 

increasing Sm3+ ions concentration from 0.0 to 8.0 mol%, the 

direct band gap is observed to decrease from 5.78 eV to 5.51 

eV. This is attributed to structural changes and the formation 

of phosphate glass matrix, which causes bonding defects in 

the network matrix of the prepared glasses because the 

addition of lanthanide dopant tailors the band structure of the 

glasses at UV-edge. The host glass and overlapping of 

different 2S+1LJ levels are used to explain the enhanced 

absorption as occurring in the UV-visible range. Research on 

the refractive index, extinction coefficient, and other optical 

properties reveals that there is little to no change with 

changing wavelength. 
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